

Exterior wall

Exterior wall created on 11.5.2018

Thermal protection

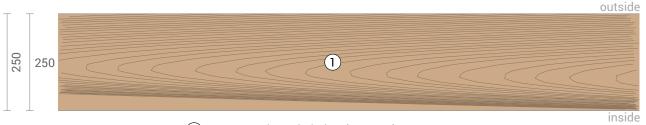
 $U = 0.44 \text{ W/(m}^2\text{K)}$

No condensate

Heat protection

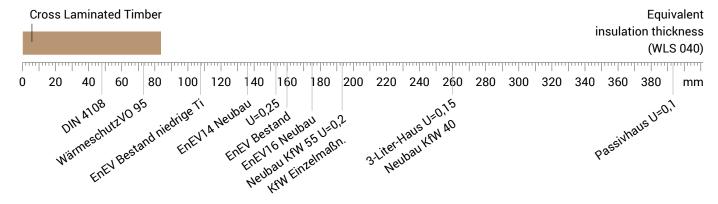
Temperature amplitude damping: 27 phase shift: 14,7 h

Thermal capacity inside: 98 kJ/m²K



Moisture proofing

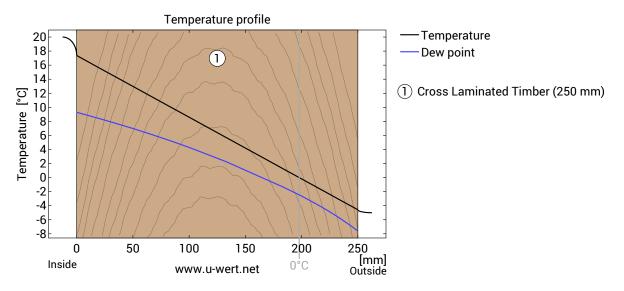
insufficient excellent


insufficient

(1) Cross Laminated Timber (250 mm)

Impact of each layer and comparison to reference values

For the following figure, the thermal resistances of the individual layers were converted in millimeters insulation. The scale refers to an insulation of thermal conductivity 0,040 W/mK.



 $\begin{tabular}{ll} Inside air: & 20,0 ^{\circ} C / 50 \% & Thickness: & 25,0 cm \\ Outside air: & -5,0 ^{\circ} C / 80 \% & sd-value: 50,0 m & Weight: & 125 kg/m^2 \\ Surface temperature:: 17,4 ^{\circ} C / -4,6 ^{\circ} C & Heat capacity: 200 kJ/m^2 K \\ \end{tabular}$

Exterior wall, U=0,44 W/(m2K)

Temperature profile

Temperature and dew-point temperature in the component. The dew-point indicates the temperature, at which water vapour condensates. As long as the temperature of the component is everywhere above the dew-point temperature, no condensation occurs. If the curves have contact, condensation occurs at the corresponding position.

Layers (from inside to outside)

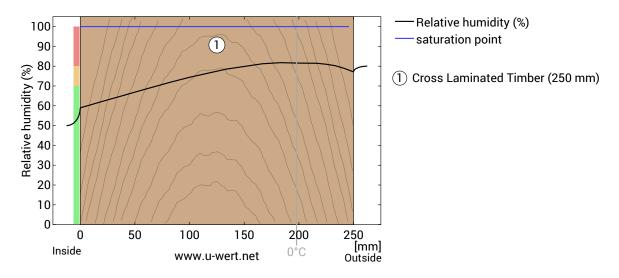
#	Material	λ	R	Temper	atur [°C]	Weight
		[W/mK]	[m²K/W]	min	max	[kg/m²]
	Thermal contact resistance*		0,130	17,4	20,0	
1	25 cm Cross Laminated Timber	0,120	2,083	-4,6	17,4	125,0
	Thermal contact resistance*		0,040	-5,0	-4,6	
	25 cm Whole component		2,253			125,0

^{*}Thermal contact resistances according to DIN 6946 for the U-value calculation. Rsi=0,25 and Rse=0,04 according to DIN 4108-3 were used for moisture proofing and temperature profile.

Surface temperature inside (min / average / max): 17,4°C 17,4°C 17,4°C Surface temperature outside (min / average / max): -4,6°C -4,6°C -4,6°C

Exterior wall, U=0,44 W/(m²K)

Moisture proofing

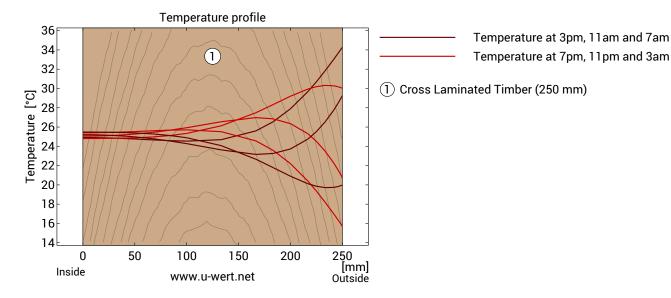

This component is free of condensate under the given climate conditions.

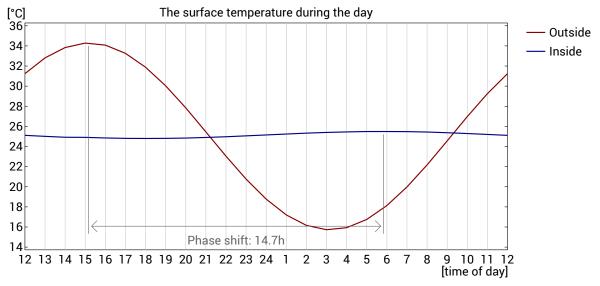
#	Material	sd-value	Conde	ensate	Weight	
		[m]	[kg/m²]	[Gew%]	[kg/m²]	
1	25 cm Cross Laminated Timber	50,00	-	-	125,0	
	25 cm Whole component	50,00			125,0	

Humidity

The temperature of the inside surface is 17,4 °C leading to a relative humidity on the surface of 59%. Mould formation is not expected under these conditions.

The following figure show the relative humidity inside the component.


Exterior wall, U=0,44 W/(m2K)


Heat protection

intent and gross negligence on the part of the service provider. For further information, please refer to the terms and conditions at http://www.u-wert.net/adb

This document has been generated by the U-value calculator on www.u-wert.net.

For the analysis of the heat protection, the temperature changes within the component were simulated during a hot summer day:

Top:Temperature profile within the component at different times. From top to bottom, brown lines: at 3 pm, 11 am and 7 am and red lines at 7 pm, 11 pm and 3 am.

Bottom:Temperature on the outer (red) and inner (blue) surface in the course of a day. The arrows indicate the location of the temperature maximum values. The maximum of the inner surface temperature should preferably occur during the second half of the night.

Phase shift*	14,7 h	Time of maximum interior temperature	5:45
Amplitude attenuation **	26,6	Thermal fluctuation on exterior surface:	18,6°C
TAV ***	0,038	Temperature fluctuation on interior surface	0,7°C

- The phase shift is the time in hours after which the temperature peak of the afternoon reaches the component interior.
- ** The amplitude attenuation describes the attenuation of the temperature wave when passing through the component. A value of 10 means that the temperature on the outside varies 10x stronger than on the inside, e.g. outside 15-35 °C, inside 24-26 °C.
- *** The temperature amplitude ratio TAV is the reciprocal of the attenuation: TAV = 1 / amplitude attenuation